SAGD高级井筒模拟和优化 Modelling & Optimization of Advanced SAGD Wellbore Completions

Anjani Kumar

Anson Abraham

Agenda

- Introduction to FlexWell
- Demo Setting up a FlexWell Model
- Demo Optimizing Circulation using CMOST
- Case Studies

Well Models

Source-Sink Model

- Simplistic; quick run times
- Focus reservoir deliverability
- Full field applications History Matching, Forecasting

Capabilities

- Gravity, friction, and heat loss
- Complex well trajectories
- Multi-lateral Wells

Wellbore Modelling – Why does it matter?

Understand Wellbore Interaction

- Undulating Wells
- Reservoir affects on Production-Injection Integration
- Completion affects model tubing strings & annulus

Optimize Well Performance

- Circulation Start-up
- Operating Parameters (Steam-Split)
- Completion Optimization
- History Match Temperature & Pressure Fall-off tests

Integrated Subsurface Modelling

- Discretized mechanistic wellbore model
- Models fluid and heat flow in the wellbore and between the wellbore and the reservoir
- Capable of modelling difficult flow dynamics

Complex Well Completions

- Multiple flow strings (communicate via annulus)
- Well undulation through different layers to follow trajectories

Gas Blanket • Transient & Segregated Flow

Each specified FlexWell is solved independently and is coupled with the reservoir

At every time-step:

- 1. Wellbore is solved first, keeping reservoir constant
- 2. Reservoir is solved second, keeping wellbore constant Thus Reservoir lags behind the wellbore by 1 iteration

- Flow regime is evaluated from gas and liquid velocities
- STARS supports following flow regimes
 - Dispersed Bubble
 - Stratified
 - Annular Mist
 - Froth I, II
 - Liquid
 - Gas
 - Intermittent

- Tubing/Annulus String Diameter may be constant or variable (E.g. tapered tubing)
- Flow Control Devices (FCDs)

11

- Solid deposition via reaction (E.g. THAI process)
 - Solid deposition reduces hydraulic diameter
- Packers Stop axial fluid flow across perforations

FlexWell Configurations

FlexWell may consist of:

- An annulus
- Up to 3 tubing strings, one of which may be concentric
- One instrumentation tubing

Instrumentation String

FlexWell Configurations

Lot of Flexibility built-in

Modelling Wellbore to Surface

Semi-Analytical Model (SAM)

- SAM calculates pressure drop and heat loss from the wellhead to the first perforation
- Steady-State Assumption
- Momentum & Energy Balance Equations are solved for each segment

Modelling Lift Mechanism

Modeling Pumps

• SAM can be used

OR

- Use FlexWell to surface: withdrawal Point and Reference Layer can be specified to simulate a downhole pump
 - Allows fluid withdrawal from any defined point along a tubing

Modelling Lift Mechanism

Modelling Gas Lift

- SAM model can be used in combination with FlexWell
- Definition of gas-lift port locations (SAM)

OR

• Extend the FlexWell to surface and model the gas injection string as one of the tubulars in FlexWell

Workflow Demo

Demo Example – SAGD Model

- Convert Source-Sink Model to FlexWell Model
- Modelling Circulation Period & SAGD
- Dual Parallel Tubing Configuration

Demo Example

Circulation Period Setup

- Annulus Shut-in
- Inject in Long Tubing
- Produce returns from Short Tubing
- Circulation Period 90 days

Demo Example

SAGD Period – Injector Constraints

- Annulus Shut-in
- Inject in Injector Long Tubing & Short Tubing
 - Maximum BHP 2000kPa
 - Maximum Injection Rate 250m³/day
 - Steam Temperature 212°C
 - Steam Quality 90%

Demo Example

SAGD Period – Producer Constraints

- Annulus Shut-in
- Producer from Long Tubing & Short Tubing
 - Minimum BHP 1500kPa
 - Maximum Liquid Rate 800m³/day
 - Maximum Steam Rate 5m³/day

Demo Example: Well Set-up

		Injector FlexWell	Producer FlexWell
	Annulus	Injector_Annulus (SHUTIN)	Producer_Annulus (SHUTIN)
Circulation	Long Tubing	Injector_LgTb_SAGD()	Producer_LgTbyCIRC()
	Short Tubing	Injector_ShTb_CIRC (•)	Producer_ShTb_SAGD (•)
11 Halles	Annulus	Injector_Annulus (SHUTIN)	Producer_Annulus (SHUTIN)
SAGD	Long Tubing	Injector_LgTb_SAGD()	Producer_LgTb_SAGD (•)
	Short Tubing	Injector_ShTb_SAGD()	Producer_ShTb_SAGD (•)

Circulation Optimization

STARS

Optimization Parameters

- Duration
- Back Pressure
- Injection Pressure

Performance Criteria

- Average Sector Temperature
 (between wells)
- Cumulative Oil at 1 year of SAGD production

What is CMOST?

- Better understanding
- Identify important parameters
- Calibrate simulation model with field data
- Obtain multiple history-matched models

- Improve NPV, recovery, etc.
- Reduce cost

- Quantify uncertainty
- Understand and reduce risk

How is it Done?

CMOST uses Master Datasets to specify parameters to be altered

Datasets with CMOST keyword strings

Files can be created:

- Manually (Text Editor)
- Through CMOST (CMOST CMM Editor)
- Through Builder

Circulation Optimization

- Optimize Circulation to ensure good start-up
- Reduce Circulation period by 2 weeks resulting in similar start-up temperature and Cumulative Oil produced

	Base Case	Optimized Case	
Injection Pressure	2000	2500	
Delta Pressure	200	75	
Duration	90 days	75 days	

Modelling Flow Control Devices

Flow Control Devices

- Multiple steam injection points along the well can result in a more uniform or controlled steam chamber growth
- Capability to optimize steam injection relative to geology
- CMG has utilized strong cooperation with industry to implement FCD's into FlexWell
- Weatherford GDA, Baker Equalizer tools are among some FCD's that can be simulated in STARS using FlexWell

Modelling Flow Control Devices

Generalized models for various types:

- Orifice
- Friction
- Venturi

Modelling Flow Control Devices

FCDTABLE Format

- Simple format that works with all FCD types
- Delta Pressure versus Flow-rate Table
- Pressure or volumetric flow-rate (mass rate* & molar rate*) can be defined as dependent variable
- Optional dependencies include
 - Gas-phase mass fraction (Steam)
 - Inlet temperature
 - Inlet pressure
 - Water-cut *

*upcoming STARS Release

Case Studies

SPE 170076 – SAGD Wellbore Completion Optimization Using Scab Liner & Steam Splitter

SPE 171131 – Investigation of Orifice Type Flow-Control Device Properties on the SAGD Process Using Coupled Wellbore Reservoir Modeling

SPE 170076 – L. Zhao & K. Ghesmat, CNRL

SAGD Wellbore Completion Optimization Using Scab Liner & Steam Splitter

Geological Background

- Low ceiling around the heel Section 1
- Good quality sand in the middle Section 2
- Relative good but thick pay near the toe Section 3

Conventional Completions

- Conventional completion design would inject more steam into the heel
- Steam breakthrough was a major concern because of the low-ceiling near the heel

Completion Optimization

- A 4.5" long string is run instead of conventional dual string design
- Different numbers of steam splitter could be inserted in 4.5" long string
- Depending on the size and numbers of ports, various percentages of steam may exit from each splitter
- Steam splitter may change the pressure profile inside the injector

Steam Splitter Optimization

Standard Configuration

Steam Splitters

Steam Splitter Optimization

Two steam splitters are installed at 500m and 750m with open toe

Steam Percentages:

- Toe: 50%
- Splitter 1: 25%
- Splitter 2: 25%

Scab Liner Completion

Completion Optimization

Optimization Conclusion

- Integrated Reservoir Wellbore Modelling
- Completion design customized to address geological heterogeneity

SPE 171131 – M. Noroozi, M. Melo, R.P. Singbeil & B. Neil, Weatherford

Investigation of Orifice Type Flow-Control Device Properties on the SAGD Process using Coupled Wellbore Reservoir Modelling

FCD Optimization

Phase I – Sensitivity Analysis

- Number of FCDs
- Location of FCDs
- Properties of FCDs

Phase II - Optimization

- Injector Well
- Producer Well

Conventional Completions

Injector Well – Single Long Tubing

Producer Well – Scab Liner

Promoted steam chamber growth near the toe of the well-pair

Phase I – Sensitivity Analysis

Injector – Total Number of FCDs

- Insufficient heating of Reservoir near heel in Base Case
- FCDs installed on Injector long string
- 4 FCDs case showed significant improved steam conformance

Phase I – Sensitivity Analysis

Producer FCDs

- Mitigation of steam break through with Production FCDs
- Location had minimal impact on Steam-Oil-Ratio and Oil Rate

Injection FCD Optimization

- 1. Optimized number of FCDs and Location
- 2. Optimized number of Ports
 - FCD 1 32; FCD 2 15

Case	Location of Injector	
	FCDs	
1	а	
2	С	
3	a+c	
4	a+b	
5	b+d	
6	a+d+c	
7	a + b + d	
8	a+b+c	
9	a+b+c+d	

Injection FCD Optimization

Production FCD Optimization

- 1. Optimized number of FCDs and Location
- 2. Optimized number of Ports
 - FCD 1 5; FCD 2 10
 - FCD 3 5; FCD 4 10

Case	Number of Producer	Location of Production
	FCDs	FCDs
1	1	b
2	1	d
3	1	f
4	2	b+d
5	2	b+f
6	2	d+f
7	3	b + d + f
8	4	a+c+d+f
9	5	a+c+d+e+f

Final Result

Final Result

Optimization results

Injection FCDs : NPV 126 % ▲ Production FCDs: NPV 146 % ▲

NPV based workflow Coupled wellbore reservoir model (FlexWell) Automatic optimization

Additional Resources

- Steam Splitter and ICD Optimization at McKay (Southern Pacific: SPE 165487, SPE 171109)
- SAGD Startup: Circulation vs Bullheading at Firebag (Suncor: SPE 157918)
- SAGD Startup with undulating wells at Carmon Creek (Shell: SPE 148819)
- Model Prediction Control to Automate SAGD wells at Leismer (Statoil: SPE 165535)

Conclusions

- FlexWell provides the capability to model complex wellbore completions coupled with the reservoir simulation model
- Better understand how the wellbore hydraulics affect the recovery
- Optimize well completions and improve the value of the asset

